Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2027
-
none (Ed.)Vegetation has recolonized the Arctic numerous times throughout the Holocene. The most recent retreat of glaciers on Baffin Island, Nunavut, has been since the Little Ice Age, due to anthropogenic warming. Retreating cold-based ice often uncovers ancient vegetation. Recently exposed plants can tell us about past plant communities and colonization rates, important information for parameterizing vegetation feedback in climate models. Here, we provide complete descriptions of vegetation communities recently exposed by two retreating ice caps on Baffin Island and compare them with modern vegetation in the surrounding areas. We found that the ancient vegetation was similar to current vegetation, meaning that the current vegetation had not significantly changed during the past several hundred years. Colonization of bare ground was evident and differed depending on the substrate (rock versus finer substrates), with saxicolous lichens colonizing rocks and acrocarpous mosses and liverworts colonizing areas with finer substrates. The mature communities differed at the two sites, mostly because of a warmer climate at the southern site. Vegetation colonization, especially of light-colored rocks, reduces albedo, but the process can take hundreds of years. Changes in plant community composition are likely to continue for thousands of years due to climate change and the arrival of new species.more » « lessFree, publicly-accessible full text available December 31, 2026
-
Free, publicly-accessible full text available October 23, 2026
-
Infrastructure across the circumpolar Arctic is exposed to permafrost thaw hazards caused by global warming and human activity, creating the risk of damage and economic losses. However, losses are underestimated in existing literature due to incomprehensive infrastructure maps. Here, we mapped infrastructure from 0.5 m resolution satellite imagery of 285 Alaskan communities with a deep learning detection model. Combined with OpenStreetMap, we mapped a statewide Alaskan building footprint of 53 M m2 and a road network of 50,477 km. With deep learning, we expanded the OpenStreetMap building footprint by 47% statewide and 86% on discontinuous and continuous permafrost. Doubling the amount found in existing literature by using our improved map, we estimated that building and road losses due to permafrost thaw could cost Alaska $37B to $51B under the SSP245 and SSP585 scenarios, respectively. Finally, we highlight shortcomings in U.S. national risk assessments, which do not account for Alaskan permafrost hazards.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Memristive devices based on two-dimensional (2D) materials have emerged as potential synaptic candidates for next-generation neuromorphic computing hardware. Here, we introduce a numerical modeling framework that facilitates efficient exploration of the large parameter space for 2D memristive synaptic devices. High-throughput charge-transport simulations are performed to investigate the voltage pulse characteristics for lateral 2D memristors and synaptic device metrics are studied for different weight-update schemes. We show that the same switching mechanism can lead to fundamentally different pulse characteristics influencing not only the device metrics but also the weight-update direction. A thorough analysis of the parameter space allows simultaneous optimization of the linearity, symmetry, and drift in the synaptic behavior that are related through tradeoffs. The presented modeling framework can serve as a tool for designing 2D memristive devices in practical neuromorphic circuits by providing guidelines for materials properties, device functionality, and system performance for target applications.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Free, publicly-accessible full text available December 31, 2026
-
Abstract BackgroundArbuscular mycorrhizal fungi (AMF) are beneficial root symbionts contributing to improved plant growth and development and resistance to abiotic and biotic stresses. Commercial bioinoculants containing AMF are widely considered as an alternative to agrochemicals in vineyards. However, their effects on grapevine plants grown in soil containing native communities of AMF are still poorly understood. In a greenhouse experiment, we evaluated the influence of five different bioinoculants on the composition of native AMF communities of young Cabernet Sauvignon vines grown in a non-sterile soil. Root colonization, leaf nitrogen concentration, plant biomass and root morphology were assessed, and AMF communities of inoculated and non-inoculated grapevine roots were profiled using high-throughput sequencing. ResultsContrary to our predictions, no differences in the microbiome of plants exposed to native AMF communities versus commercial AMF bioinoculants + native AMF communities were detected in roots. However, inoculation induced positive changes in root traits as well as increased AMF colonization, plant biomass, and leaf nitrogen. Most of these desirable functional traits were positively correlated with the relative abundance of operational taxonomic units identified asGlomus,RhizophagusandClaroideoglomusgenera. ConclusionThese results suggest synergistic interactions between commercial AMF bioinoculants and native AMF communities of roots to promote grapevine growth. Long-term studies with further genomics, metabolomics and physiological research are needed to provide a deeper understanding of the symbiotic interaction among grapevine roots, bioinoculants and natural AMF communities and their role to promote plant adaptation to current environmental concerns.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Online sex advertisements (sex ads) have been linked to many U.S. sex trafficking cases. However, since the closure of the dominant website, Backpage.com (Backpage), many competing sites have emerged that are hosted in countries where U.S. law enforcement organizations have no jurisdiction. Although the online ecosystem has changed significantly, very little research uses data from sites other than Backpage, and even less uses data from multiple sites. This paper presents an anonymized dataset derived from the text and image artifacts of more than 10 million sex ads. By making this dataset publicly available, we aim to reduce barriers to entry for researchers interested in conducting data-driven counter-trafficking research. The dataset can be used to test hypotheses related to sex ads and intersite connectivity, understand the posting processes employed by prominent sites in the current online sex ad ecosystem, and develop multidisciplinary approaches for estimating ad legitimacy. Progress in any of these areas can result in potentially lifesaving interventions for ST victims.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Free, publicly-accessible full text available December 1, 2026
-
Free, publicly-accessible full text available September 26, 2026
An official website of the United States government
